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 11 

Abstract 12 

Soil organic carbon (SOC) dynamics result from different interacting processes and controls 13 

on spatial scales from sub-aggregate to pedon to the whole ecosystem. These complex 14 

dynamics are translated into models as abundant degrees of freedom. This high number of not 15 

directly measurable variables and, on the other hand, very limited data at disposal result in 16 

equifinality and parameter uncertainty.  17 

Carbon radioisotope measurements are a proxy for SOC age both at annual to decadal (bomb 18 

peak based) and centennial to millennial time scales (radio decay based), and thus can be used 19 

in addition to total organic C for constraining SOC models. By considering this additional 20 

information, uncertainties in model structure and parameters may be reduced. 21 

To test this hypothesis we studied SOC dynamics and their defining kinetic parameters in the 22 

ZOFE experiment, a >60-years old controlled cropland experiment in Switzerland, by 23 

utilising SOC and SO
14

C time-series. To represent different processes we applied five model 24 

structures, all stemming from a simple mother model (ICBM): I) two decomposing pools, II) 25 

an inert pool added, III) three decomposing pools, IV) two decomposing pools with a 26 

substrate control feedback on decomposition, V) as IV but with also an inert pool. These 27 

structures were extended to explicitly represent total SOC and 
14

C pools.  28 
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 3 

The use of different model structures allowed us to explore model structural uncertainty and 1 

the impact of 
14

C on kinetic parameters. We considered parameter uncertainty by calibrating 2 

in a formal Bayesian framework. 3 

By varying the relative importance of total SOC and SO
14

C data in the calibration, we could 4 

quantify the effect of the information from these two data streams on estimated model 5 

parameters. The weighing of the two data streams was crucial for determining model 6 

outcomes, and we suggest including it in future modelling efforts whenever SO
14

C data are 7 

available. 8 

The measurements and all model structures indicated a dramatic decline in SOC in the ZOFE 9 

experiment after an initial land use change in 1949 from grass- to cropland, followed by a 10 

constant but smaller decline. According to all structures, the three treatments (control, mineral 11 

fertilizer, farmyard manure) we considered were still far from equilibrium. The estimates of 12 

mean residence time (MRT) of the C pools defined by our models were sensitive to the 13 

consideration of the SO
14

C data stream. Model structure had a smaller effect on estimated 14 

MRT, which ranged between 5.91 and 4.22 years and 78.93 and 98.85 years for young and 15 

old pool, respectively, for structures without substrate interactions. 16 

The simplest model structure performed the best according to information criteria, validating 17 

the idea that we still lack data for mechanistic SOC models. Although we could not exclude 18 

any of the considered processes possibly involved in SOC decomposition, it was not possible 19 

to discriminate their relative importance. 20 

 21 

1 Introduction 22 

The dynamics of soil organic carbon (SOC) are directly linked to major soil ecosystem 23 

services such as soil fertility, resistance to erosion, C sequestration and soil CO2 emissions 24 

(Lal, 2004). Understanding such dynamics is therefore of paramount importance for the 25 

challenges of the present century (IPCC, 2014). In particular, the precise quantification of 26 

SOC cycles would allow for a monetization of the respective ecosystem services, and is a 27 

crucial step to overcome the failure of this market (Alexander et al., 2015). 28 

However, the time scale of SOC decomposition, from years to millennia, makes it difficult to 29 

design experiments and requires gathering indirect answers through analysis of monitoring 30 

programs, long-term experiments and SOC turnover models. Most of these models, for 31 
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 4 

example among the most well-known RothC (Coleman et al., 1997), Century (Parton et al., 1 

1993) and Yasso (Liski et al., 2005), are built around multiple conceptual pools decomposing 2 

with first-order kinetics. This basic structure works well to simulate decadal to centennial 3 

time scales, but shows problems with longer (when considering more protected organic 4 

matter, e.g. Trumbore and Czimczik, 2008) or shorter (when considering microbial dynamics, 5 

e.g. Schimel and Weintraub, 2003) time scales. 6 

Formally, these models could be extended in complexity to represent more accurately all the 7 

processes involved in SOC decomposition that we are aware of. However, a purely 8 

mechanistic modelling approach often fails because the lack of data in respect to the 9 

complexity of the system limits the number of latent variables (all the variables that cannot be 10 

directly measured) that we can infer. A high system complexity, as characterised by multiple 11 

interactions between parameters, causes equifinality problems (Beven, 2006). Representing 12 

such interactions in a way that is both accurate and abstract enough to realistically consider 13 

the availability of data is termed the bias/variance dilemma (Briscoe and Feldman, 2011). 14 

This dilemma represents the most critical point in producing reliable estimates in SOC 15 

modelling. 16 

The struggle of contemporary SOC models becomes more evident when including SO
14

C 17 

data. When time series for both total SOC and SO
14

C are available, they may suggest 18 

contradictory dynamics (Shirato et al., 2013). This confirms the high uncertainty in defining 19 

contemporary SOC model structures and at the same time raises the question of how to use 20 

these two sources of information. 21 

Methods for the inclusion of radiocarbon measurements in SOC models are currently actively 22 

developed. While most SOC models consider 
14

C implicitly through the use of mass balance 23 

equations, some attempts have been made to consider 
14

C explicitly (Ahrens et al., 2014) as a 24 

separate set of C molecules. A similar approach has been proposed also for 
13

C by Ågren et 25 

al. (1996). The explicit approach offers more flexibility in the representation of processes that 26 

might influence SO
14

C at the price of a minimal increase in model complexity. Nevertheless, 27 

even with explicit consideration of 
14

C, modelling results are still not well determined 28 

(Ahrens et al., 2014). 29 

Yet a few studies have considered SO
14

C data within an uncertainty analysis framework. 30 

Braakhekke et al. (2014) and Ahrens et al. (2014) both considered model uncertainty, but 31 

focused on a single model structure. However, both parameter uncertainty and structural 32 
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 5 

uncertainty are significant problems endemic to environmental models (Beven, 2002). 1 

Moreover, in both these studies the model sensitivity to radiocarbon was limited to two cases, 2 

either including or excluding SO
14

C data. The inclusion of SO
14

C data can modify the model 3 

space substantially (Ahrens et al., 2014) and in a non-linear way. The weight assigned to 4 

SO
14

C and SOC is a crucial parameter influencing strongly the modelling results, and the 5 

effect of this parameter should, therefore, be studied more in detail. 6 

In order to consider the effect of 
14

C data with respect to structural uncertainty, we calibrated 7 

a set of SOC models over total SOC time series from the ZOFE long-term field experiment 8 

(Oberholzer et al., 2014). In addition, we made use of SO
14

C measurements in key positions 9 

of the time series. Model structures were built around ICBM, a basic two-pool SOC 10 

decomposition model (Andrén and Kätterer, 1997), and calibrated within a Markov chain 11 

Monte Carlo framework to take care of equifinality and parameter uncertainty. We considered 12 

the possibility of substrate interactions by introducing a control term on decomposition 13 

influenced by the amount of fresh substrate available. To consider the effect of total SOC and 14 

SO
14

C on the calibration, we assigned a relative weight to the two data streams and calibrated 15 

model structures across a gradient of such weights.  16 

The three research questions driving this work are:  17 

 How will the inclusion of 
14

C data influence the SOC parameters estimated from a multi-18 

pool model?  19 

 What are the reasons for the observed discrepancy between modelled total SOC and 20 

SO
14

C dynamics, and which are the most important ones?   21 

 Can we model SOC and SO
14

C jointly in a way that is minimalistic and flexible and yet 22 

effective? 23 

These research questions generated the following, partially concurrent, hypotheses:  24 

1. An underestimation of the age of slow C due to the presence of recalcitrant C (e.g. 25 

black C, Leifeld, 2008) or C protected through some other mechanisms is one possible reason 26 

for the observed discrepancy between SOC and SO
14

C modelled kinetics. Thus, representing 27 

such slow C in the model as inert or particularly slow pool will improve model performances. 28 

2. An interaction between substrate pools is a process often neglected in C models but 29 

which can contribute the observed discrepancy. Representing this process in the model can 30 

improve model performances. 31 
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 6 

3. Is it possible to discriminate between the above mentioned processes? 1 

To answer our questions we compared the results from different model structures, each 2 

focusing on slightly different processes. By comparing different model structures we also 3 

aimed at understanding more realistically SOC kinetics in the ZOFE experiments by 4 

acknowledging some model structural uncertainty. 5 

 6 

2 Material and methods 7 

2.1 Experimental site 8 

The data utilized in this study have been collected in the Zürich Organic Fertilization 9 

Experiment (ZOFE, Oberholzer et al. 2014), located in Switzerland at the Agroscope 10 

premises in Reckenholz (Zürich), at 47°25’37” N, 8°31”6’ E. The experiment has been 11 

initiated in 1949 and comprises 12 different fertilization treatments, among which we selected 12 

three (Table 1): the control treatment (not receiving any fertilizer input), the mineral 13 

fertilization treatment (receiving yearly 139 N, 28 P, 167 K, 56 kg ha-1 from 1981 and 108 N, 14 

61 P, 318 K, 12 kg ha-1 in the period 1949-1980) and the farmyard manure (FYM) treatment 15 

(receiving yearly 91 N, 24 P, 65 K, 31 kg ha-1 from organic fertilizer and, bi-annually, 1 t 16 

organic carbon from FYM). The site was low-intensity permanent grassland before 1949. Soil 17 

is a Luvisol (WRB, 2007), carbonate-free, with 14% clay, 27% silt and 57% sand. Organic C 18 

content was 1.3% at the beginning of the experiment, and soil pH (H2O) was 6.5. The crop 19 

rotation has a period of 8 years, and includes winter wheat/intercrop-maize-potatoes-winter 20 

wheat/intercrop-maize-summer barley-ley-ley. Main products and by-products of crops are 21 

always removed. 22 

2.2 Data collection and soil analyses 23 

The SOC dataset comes from Oberholzer et al. (2014). For modelling, the calibration errors 24 

for both SOC and SO
14

C has been expressed as coefficient of variation (CV). The CV of the 25 

SOC measurements has been measured independently in 2012 (data not published) and varied 26 

between 0.080 and 0.086 for the different treatments. The SO
14

C dataset comes from Leifeld 27 

and Mayer (2015). The CV in 2012 varied in this case between 0.017 and 0.029, and has been 28 

extrapolated to the whole SO
14

C time series. All radiocarbon concentrations utilized here are 29 

expressed in pMC as described in Stuiver and Polach (1977). 30 

Biogeosciences Discuss., doi:10.5194/bg-2015-630, 2016
Manuscript under review for journal Biogeosciences
Published: 18 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 7 

In the SO
14

C time series we assumed that the pre-bomb SOC was at equilibrium with the 1 

atmospheric isotopic value. Although the SO
14

C might slightly deviate from the 
14

C content 2 

of the atmosphere, the difference between any possible natural discrimination and the effect 3 

of the bomb peak is several orders of magnitude (Goslar et al., 2004) and we regard such a 4 

difference as negligible. In order to improve the calibration of the model in respect to the 5 

SO
14

C trend, we assumed a fourth SO
14

C point in year 1955 as corresponding to the 6 

atmospheric signature. 7 

We took the atmospheric 
14

C time series from the Schauinsland station (Levin, Ingeborg and 8 

Kromer 2004; Levin et al., 2013), relatively close to our site (48 km). Radiocarbon values 9 

from May to August are commonly used to represent the vegetation’s signature (Levin, 10 

Ingeborg and Kromer 2004), but this implies the assumption of CO2 fixation only in late 11 

spring-summer. We calculated the difference in the time series with and without filtering out 12 

autumn-winter months, after a spline interpolation to regularize the time series, as 3.4 pMC 13 

(root mean squared error), representing a CV between 0.01 and 0.03. This we considered as 14 

negligible and used yearly averages instead. 15 

2.3 Calculation of C inputs 16 

The C inputs have been calculated with the C allocation coefficients proposed by Bolinder et 17 

al. (2007) and in case of potatoes by Walther et al. (1994). More details about the input 18 

calculations can be found in Oberholzer et al. (2014). 19 

Carbon allocation coefficients may differ between treatments. The potential error introduced 20 

by the nonlinear nature of the root/shoot factor (Bond-Lamberty et al., 2002) was considered 21 

negligible in our case due to conditions being close to optimal for plant growth at our site. 22 

The control treatment still stores as much SOC as treatments with full mineral fertilization 23 

(Oberholzer et al., 2014) and it was still considered to be far from causing extreme deviations 24 

from the selected root/shoot ratio. Another source of error in our estimate is inherent to 25 

extrapolating the original root-shoot relationship (Bolinder et al., 2007) to our soil. Such 26 

relationship was built on 168 samples reviewed from the literature of typical agricultural soils, 27 

not different from our alluvial soil, and this error should therefore be small. Another possible 28 

error comes from the lack of estimates for C in form of root exudates. 29 

We considered the above uncertainties for the C allocation by introducing an error factor 30 

calibrated with a uniform prior distribution between 0.8 and 1.2.  31 
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 8 

 1 

2.4 Five possible model structures for SOC  2 

The basic model (structure I) is the ICBM model developed by Andrén and Kätterer (1997). 3 

ICBM is a minimalistic model of the general SOC decomposition theory built around two 4 

SOC pools decomposing with first order kinetics. The simplicity of the model allows for a 5 

high degree of flexibility and makes it ideal for model structure explorations, hypotheses 6 

testing and model development.  7 

We used the model stepwise in its recursive form, as derived by Kätterer et al. (2004), in 8 

order to follow the highly nonlinear shape of the atmospheric 
14

C curve of the last century 9 

(Kurths et al., 1994). The dynamic system representing SOC is described by the following 10 

equations:  11 

 12 
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The SOC at time t is therefore calculated as:  16 

 )()()( ttt OYTot   (4) 17 

This system describes the evolution of two C pools, young (Y) and old (O) SOC, 18 

decomposing with rate Yk  and Ok . Their mean residence time (MRT) is defined by the 19 

reciprocal of the decomposition constants, or 
Yk

1
 and 

Ok

1
. The term φ describes the flux 20 

between the two pools, which is controlled by the humification coefficient 1h  that defines the 21 

amount of carbon that goes from Y to O. The term r aggregates climatic and edaphic 22 

influence, and is calculated according to equations that follow in the text. The system of Eq. 23 

(1), (2), (3) and (4) can then be modified in order to represent different hypotheses. The 24 

model defined by the system of Eq. (1), (2), (3) and (4) is therefore calibrated for 4 unknown 25 

parameters, namely Yk , Ok , 1h   and the initial distribution of C between pools Y and O. 26 
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 9 

A first modification (i.e. model structure II), already suggested by Juston (2012), adds a static 1 

pool representing SOC cycling at extremely slow decomposition rates. This pool is virtually 2 

inert and does not interact with the other pools or decomposes. Since the SOC age spectrum is 3 

likely distributed according to a logarithmic function of age (Bosatta and Ågren, 1999), this 4 

approximation may be reasonable for very slow SOC atoms. Eq. (4) can therefore be modified 5 

by adding an "inert" pool R as:  6 

 ROYTot ttt  )()()(  (5) 7 

This modification adds one parameter to the initial calibration to represent the initial value of 8 

R.  9 

A second modification, i.e. model structure III, introduces instead of a static third pool a 10 

decomposing third pool. The dynamics of the R pool in Eq. (5) now are similar to O in Eq. 11 

(2): 12 
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This modification adds two more unknown parameters to the initial model, namely Rk  and 2h  15 

(table 2).  16 

A third modification of structure I, i.e. model structure IV, modifies the basic set of equations 17 

with a single, aggregated term to account for the effect of ”young” substrates on microbial 18 

dynamics and therefore on decomposition rates. We modified Eq. (1) and (2) by adding a 19 

term α in the exponent of the decomposition function according to Wutzler and Reichstein 20 

(2013). Since the fluxes from the slower and older pool are small compared to the flux from 21 

the younger pool we approximated the system by neglecting the former in calculating α as 22 

already suggested by Wutzler and Reichstein (2013). The resulting equation defining α is:  23 
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  (8) 24 

where   represents a lumped term aggregating microbial limitations on decomposition 25 

(Wutzler and Reichstein 2013). The term α is introduced as a modifier for both Yk  and Ok . 26 

The denominator represents the maximum possible microbial uptake, which is the total flux 27 
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 10 

from Y to O. When the flux from the young pool is below the value of   decomposition goes 1 

to zero, but when this flux increases above this value decomposition approaches Yk  and Ok .  2 

This model structure adds one more unknown parameter (Table 2). Finally, model structure II 3 

was extended by a substrate control as in structure IV to give structure V. All model 4 

structures were run in annual time steps. 5 

For model structures III and IV, with a substrate interaction term, an alternative MRT could 6 

be defined as 
k

1
. Although, since its discussion goes beyond the scope of this manuscript, 7 

we did not consider such definition for our results, we reported it in order to better explain the 8 

numerical effect of Eq. (8) on MRT.  9 

 10 

2.5 Model structure for SO14C 11 

Each model structure was extended by running a separate system of equations for SO
14

C. 12 

With the introduction of SO
14

C, the number of parameters increases (Table 2). We calculated 13 

the ratio of 
12

C
 /14

C from the pMC value according to the definitions given in Stuiver and 14 

Polach (1977), and calculated from this ratio the mass of 
14

C. We set the δ
13

C normalization 15 

factor at -26‰, close to that of a typical C3 soil. Most parameters were assumed to be the 16 

same as for SOC except for the initial distribution of the SO
14

C pools which was allowed to 17 

vary by using a normal prior distribution centered on the mean of SOC pools distribution and 18 

with a coefficient of variation of 0.1. 19 

The radiocarbon decay is considered by adding the term λ, corresponding to 
8265

1
 yr

-1
 20 

(Stuiver and Polach 1977), to all decomposition constants which then become poolk . 21 

We did not consider a time lag between C assimilation and release into the SOC cycle 22 

because we are considering an agricultural system with annual plants. These plants have a 23 

physiological time lag of few hours (Kuzyakov and Gavrichkova, 2010) and eventual storage 24 

compounds are released at the end of the cultural cycle, which is in most cases less than one 25 

year. The years during rotation where leys are present are few (Oberholzer et al. 2014). With 26 

the annual resolution utilized in this study the time lag could therefore considered being 27 

negligible. 28 
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 11 

The effect of the two data streams (SOC and SO
14

C) on the calibration of the model structures 1 

has been tested by introducing an arbitrary weighting term. This value, between 0 and 1, acts 2 

in the Bayesian calibration to modify the variance of the probability distributions representing 3 

the two time series. When the weighting term tends to one, the variance defining the SOC 4 

probability distribution tends to zero while for the SO
14

C probability distribution it tends to 5 

infinite (S1). This alters the weight of that particular time series on the joint posterior 6 

distribution of the calibrated values. The precision of the SO
14

C data stream tends to zero and 7 

so it does not influence the calibration. When the weighting tends to zero, the opposite 8 

applies. 9 

In order to better capture the effect of adding the information contained in the SO
14

C data 10 

stream in the calibration, we run all the calibrations over a gradient of such weights (with 11 

discrete values 0.05, 0.175, 0.350, 0.500, 0.650, 0.825, 0.950). 12 

Since the two data streams are not homogeneous, this weighting term is considered as an 13 

empirical evaluation of the sensitivity of the model. It is an effective method for assessing the 14 

relative effect of the information from either isotope and offers more detail compared to 15 

testing only for the two options (SOC only and SOC + SO
14

C) separately. 16 

 17 

2.6 Considering kinetic isotope effects in soil 18 

A possible differential loss of SO
14

C compared to SOC, caused by kinetic isotope effects 19 

(Tsai and Hu, 2013), is accounted for by the standard normalization of 
14

C values for δ
13

C. 20 

Since every process that possibly causes a variation of the 
13

C content from the moment that 21 

the CO2 was fixed might be assumed squared on 
14

C (Stuiver and Polach 1977), the 22 

normalization considers any process that can influence the C signature. This normalization 23 

relies on the assumption that the 
13

C/
14

C ratio in nature is stable, since every molecule 24 

originates from atmospheric CO2 which is supposedly homogeneous in open air. The Suess 25 

effect, a change in the atmospheric isotopic composition triggered by the burning of fossil 26 

fuels (e.g. Francey et al., 1999), does not represent in this sense a problem since the 
14

C 27 

values are calibrated over atmospheric time series. Errors in the correction might be 28 

introduced by eventual local hot spots (e.g. industrial contaminations) for the atmospheric 29 

13
C/

14
C ratio. Our site, located at few kilometers from any major industry and hundreds of 30 

meters from any building, should be relatively free from local contamination sources and the 31 

closeness of the site to the measurement of atmospheric 
14

C time series should account for 32 

Biogeosciences Discuss., doi:10.5194/bg-2015-630, 2016
Manuscript under review for journal Biogeosciences
Published: 18 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 12 

regional variations. Nevertheless, we considered the possible error associated with these 1 

assumptions by allowing the initial ratios of the 
14

C pools to vary slightly for 
14

C by assigning 2 

a normal prior distribution to them, centered on the SOC ratios with deviation corresponding 3 

to 1% of these values. 4 

 5 

2.7 Climatic and edaphic variables 6 

The parameter r in Eq. (1) and (2) in the original ICBM calibration (Andrén and Kätterer, 7 

1997) aggregates all the influences on SOC from soil type and climate. It was originally 8 

conceived as a constant, but it has been used also as a response variable connected with 9 

climatic and edaphic factors (Andrén et al., 2012). We decided to consider r according to the 10 

following equation:  11 

  )()()( tMoisttTempt rrr  (9) 12 

where Tempr  and Moistr  are the decomposition rate modifiers due to temperature and soil 13 

moisture, respectively and  is an error term. 14 

In this particular case we included proxies for soil temperature and soil moisture and we 15 

selected the two climatic functions from the CENTURY model (Parton et al., 2001; Bauer et 16 

al., 2008), since they adapted well to the data available for this experiment. The temperature 17 

function was adopted as following:  18 

   715097.0arctan465.0560.0)(  Tr TTemp  (10) 19 

while the moisture function was adopted as following:  20 
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where T is soil temperature (° C), PPT is the sum of stored water and precipitation, in our case 22 

approximated to total accumulated precipitation for the reference period due to the nature of 23 

our dataset and PET is the potential evapotranspiration (Primault, 1962). The term has been 24 

described with a uniform distribution between -0.5 and +0.5.  25 
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Meteorological data were obtained from the Swiss Federal Research Station for Agroecology 1 

and Agriculture Zürich-Reckenholz (FAL), located at less than 100 m from the ZOFE 2 

experiment. 3 

In order to maintain comparability of results with the original ICBM model, r has been 4 

normalized with its mean value as 
r

r
r

t

tnorm

)(

)(  , therefore making it vary around 1. The 5 

normalization, together with the introduction of the   term in Eq. (9), reconciles the climatic 6 

functions with ICBM. The resulting variation of the normr  term is pictured in S3. Since we are 7 

comparing three treatments in the same field we do not need to take into account any 8 

difference in climate between the plots, and we can use the climatic parameter only to account 9 

for variability in the data that might be due to inter-annual climatic variation.  10 

 11 

2.8 Model calibration, initialization and prior assumptions 12 

Given the close interactions between the kinetic parameters a deterministic optimization 13 

algorithm might miss possible equifinality (Beven, 2008). We therefore relied on a 14 

Metropolis-Hastings algorithm (in the implementation of JAGS, Plummer 2003), with 15 

likelihood function according to a formal Bayesian statistical framework. 16 

We assumed that the parameters defining the SOC pools (namely poolk , poolh  and the initial 17 

pool distribution) were the same for all treatments. Every calibration has been run in 4 18 

separated Markov chains, and the convergence of the chains has been assessed visually 19 

through the use of Gelman’s plots (Brooks and Gelman, 1998). Each chain was calibrated 20 

with a first adaptation period of 10.000 runs of which 5000 have been discarded as burn-in 21 

period, and then 100.000 search runs. The chains always showed reasonable convergence. 22 

Priors for the rates ( poolk ) have been considered as normally distributed, with mean value 23 

coming from Andrén and Kätterer (1997) and deviation set to half of the mean value. The 24 

mean of the prior for  Ok   has been set considering it as a fixed ratio of the value of Yk . Also 25 

this ratio (0.075) has been calculated from Andrén and Kätterer (1997). The priors for Yh  26 

have been considered normally distributed. Mean values to represent the different input 27 

qualities were calculated as averages of all the scenarios reported in Kätterer et al. (2011) as 28 

following. By assuming the composition of the young pool being similar to the inputs, we 29 
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chose the prior value for Yh  for the control and the mineral fertilizer treatments as 0.185 1 

(which is the average for roots and shoots) while for the farmyard manure the chosen value 2 

was 0.265. We have chosen for this parameter stronger prior distributions by setting its 3 

deviation to 10% of the mean value. In the third model structure the Oh  prior has been set as 4 

an uniform distribution between 0 and Yh . 5 

Priors for the initial distribution of the SOC pools were considered uniformly distributed 6 

between 0 and 100% of initial SOC but constrained by the mass balance, i.e., the sum of SOC 7 

mass in all pools should add up to 100% of initial SOC. Priors for the initial distribution of 8 

the pools for SO
14

C were generated with a uniform distribution using the portion of total SOC 9 

pools as mean and variance set to 1% of this value. 10 

 11 

2.9 Model comparison and selection 12 

Following the same principle of simplicity maximization on which we built the whole study, 13 

we selected the Akaike information criterion (AIC) to estimate the information content of the 14 

model structures. The AIC has been calculated as:  15 

 









n

RSS
npAIC log2  (12) 16 

where p is the number of parameters, n is the number of samples and RSS is the residual sum 17 

of square of the model. 18 

The use of the RSS in Eq. (12) is a simplification, since it is a metric only proportional to the 19 

likelihood. The difference lies in the lack of one integration constant. Since the AIC is used in 20 

this study only for a relative comparison between model structures, we considered this 21 

approximation justifiable. The use of the AIC rather than RMSE for measuring model 22 

performances can capture how the different model structures react to the introduction of the 23 

additional stream of information, i.e. SO
14

C, by acting as a structure-dependent normalization, 24 

allowing for a performance comparison between different structures. Also the best weighting 25 

parameter representing the partial weight of SOC and SO
14

C data has been selected according 26 

to the smallest AIC. 27 

The choice of the AIC is motivated by its simplicity (explicit also in the intention of his 28 

author, Akaike, 1974), and by the consideration that we are comparing models over exactly 29 
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the same number of samples (Burnham and Anderson, 2004). But since the choice of any 1 

model performance indicator is highly subjective, we also calculated for all the models the 2 

deviance information criterion (DIC, Plummer, 2008) for comparison with the AIC.  3 

 4 

3 Results 5 

3.1 Effect of the SOC data stream on model performances 6 

In general the addition of the SO
14

C data always improved the performance of the calibrations 7 

until a certain optimal point. This effect was similar for any of the different model structures, 8 

and an eventual relative advantage of one structure above another in considering information 9 

from SO
14

C data was not evident. The improvement increased for every structure up to a 10 

partial weight of 0.35, and then worsened marginally when moving forward toward a higher 11 

weight of SO
14

C data (Fig. 1). However, the decrease in performances was dramatic when 12 

moving towards a bigger relative weight of SO
14

C data. 13 

The introduction of the SO
14

C data stream in general decreased the uncertainty of the 14 

parameters until an optimal weight for all the models without a substrate interaction 15 

(structures I, II and III), and the average coefficient of variation of the parameters followed a 16 

general pattern similar to the average AIC (S2). For the structures including substrate 17 

interaction (VI and V) the pattern was oscillating in a more complicated way, making it 18 

impossible to identify any consistent trend. The RMSE (Fig. 2) of the model structures was 19 

closely related to the AIC but with different relative values for the different structures. 20 

 21 

3.2 Optimal model choice 22 

Overall, the "best" model structure indicated by the AIC to best describe our data was the 23 

basic ICBM, structure I (Fig. 1). This is particularly true for the FYM treatment (with highest 24 

SOC), which was the treatment best described by all our model structures.  25 

The average RMSE was similar for all model structures, but there were small differences. 26 

Unexpectedly, structure III did not present the lowest average RMSE among all structures 27 

(Fig. 2), although it has the highest number of parameters. Structure II was the one which 28 

performed the best in terms of RMSE.  29 
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We compared these five structures also through DIC, which was 591.9 for structure I, 579.9 1 

for structure II, 593.8 for structure III, 603.1 for structure IV and 591.9 for structure V. Also 2 

the DIC indicated better performances of simpler structures and it indicated structure II as the 3 

best model. However, it did not indicate any difference between the second and third best 4 

choice (structure I and V) and differences were not as evident as when using AIC. 5 

 6 

3.3 SOC distribution and kinetics in the ZOFE experiment as estimated by 7 

different model structures 8 

The MRT (Fig. 8) of the old pool, according to structures I and II, were 94.99±0.10 and 9 

78.93±0.11 years, respectively, while the ones for the young pool were 5.91±0.09 and 10 

5.33±0.08years, respectively. Owing to the introduction of an additional term, modifying the 11 

kinetic in relation to the amount of young substrate, the results differ for structures IV and V. 12 

Here, MRT results were 14.87±0.85 and 16.76±0.45 years for the old pool and 0.85±0.34 and 13 

1.01±0.30 years for the young pool, respectively. Structure III determined pool definitions 14 

similar to structure I and II; and in this case the MRT was 98.85±0.10 years for the old and 15 

4.22±0.10 years for the young pool. The third, “recalcitrant” pool in structure III revealed a 16 

MRT of 477.78±0.66 years. Simulation results are shown only for structure I (Fig. 6) and II 17 

(Fig. 7), and for structure II, III and V in S5, S6 and S7.  18 

The estimated size of the initial pools did not vary much among the selected model structures 19 

(Fig. 9). The amount of carbon in the young pool ranged from 15.37±1.64 Mg ha
-1

 (structure 20 

I) to 11.37±1.50 Mg ha
-1

 (structure III). The amount of carbon in the old pool ranged from 21 

22.70±1.59 Mg ha
-1

 (structure I) to 20.28±1.74 Mg ha
-1

 (structure IV) for structures 22 

considering only two pools, while it ranged from 25.25±1.39 Mg ha
-1

 (structure II) to 23 

23.00±1.70 Mg ha
-1

 (structure III) for structures considering three pools. As evident from 24 

Figs. 3, 4 and 5, these results are also strongly dependent on the choice of the weighting 25 

parameter between the SOC and the SO
14

C data streams. 26 

All the tested model structures, and within all the tested values of the weighting parameter, 27 

inferred a change right after the land use change in the ZOFE trial. In all treatments without 28 

amendments, the young pool decreased rapidly within a few years after conversion from 29 

grassland to FYM and mineral fertilization. In structures I this decrease was more dramatic, 30 

while more complex models (II, III, IV and V) could describe the observed trends as more 31 

gradual thanks to the additional number of parameters.  32 
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 1 

4 Discussion 2 

4.1 Effect of the C data stream on the kinetics of SOC pools 3 

During calibration all model structures seemed to react to the SO
14

C data by reducing 4 

decomposition rates and humification coefficients, i.e., the introduction of SO
14

C decelerated 5 

the simulated C dynamics. For structure I the effect of adding the SO
14

C data seemed to slow 6 

down the decomposition of both pools (Fig. 3). This decrease was associated with a decrease 7 

of the humification coefficient, hence reducing also the flux of material that goes from a faster 8 

to a slower pool. In the same time the relative size of the slower pool decreased. For structure 9 

IV (Fig. 3) the addition of a substrate interaction term made the decrease in speed associated 10 

with the introduction of SO
14

C data more dramatic and in some specific cases more difficult 11 

to interpret, but in general following a similar trend. In structures with a third inert pool, II 12 

and V (Fig. 4), trends were replicating those with only two pools. Structure V presented a 13 

pattern very similar to structure IV. The inert pool proportion increased with the increase of 14 

the weight of SO
14

C data. Also results from structure III (S5) indicate a consistent reduction 15 

in the speed of C cycling with the introduction of the SO
14

C data in every parameter. In 16 

general we can affirm that the inclusion of the SO
14

C data decreased the size of the slower O 17 

pool while it increased the residence time of both Y and O pools. 18 

None of our tested model structures could represent consistently both data streams at the same 19 

time. For the SO
14

C value measured in 1973, every model structure under-predicted the 20 

isotopic value of SOC particularly for the low input treatment. Conversely, the last SO
14

C 21 

point, measured in 2012, was consistently over-predicted by every model structure. This 22 

suggests that all our model structures are still failing to represent some key process related to 23 

SOC decomposition. 24 

The use of the radiocarbon bomb peak to constrain SOC turnover models, although in use 25 

since decades (Trumbore, 1989), has often raised similar controversies. The implicit inclusion 26 

of 
14

C data in C models through mass balance functions produced discrepancies between 27 

modelled and measured values in a recent study by Shirato et al. (2013). In another study 28 

(Rethemeyer et al., 2007) this approach was judged as a viable option. The explicit 29 

consideration of 
14

C pools did not offer in this sense any advantage over implicit models. 30 

Braakhekke et al. (2014), using a soil profile model, found that the addition of SO
14

C data as 31 

new constrain produced an increase in the uncertainty of the SOC stocks in the individual 32 
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layers, while improved just marginally the total SOC stock estimate. Ahrens et al. (2014) 1 

utilized SO
14

C data to constrain an isotopically explicit single layer model in a situation 2 

where data about SOC kinetics were scarce. In that case the problem of model initialization 3 

was partially solved with additional information coming from 
14

C, but the high uncertainty of 4 

the considered system did not make it possible to determine if one site was losing or gaining 5 

carbon, and the strong interaction between MRT and deviation from the steady state made 6 

evident a trade-off between estimates with and without using SO
14

C data. 7 

One of the possible reasons for the recorded discrepancies in the estimates from models 8 

conditioned with and without SO
14

C data might be the absence of microbial dynamics in SOC 9 

stabilization (Riley et al., 2014). Ahrens et al. (2015), with a rather mechanistic model, 10 

recently suggested that a control on biologically mediated depolymerization can explain alone 11 

some of the observed discrepancies. But the performances of structure IV and V on our 12 

dataset, lower in terms of AIC compared to the simpler structures I and II, did not allow us to 13 

confirm such a hypothesis. Another possible explanation for the discrepancy between models 14 

and measurements is the presence of recalcitrant and old organic carbon not well captured by 15 

our model structures. Structure II was selected by the AIC, while structure III, although not 16 

performing best with AIC due to the high number of parameters, presented a good RMSE. 17 

Compared to the basic structure I both these structures introduced an additional slow SOC 18 

pool. Some form of chemical recalcitrance cannot therefore yet be ruled out. 19 

In our study we focused on the optimal utilization of the information contained in SO
14

C data 20 

together with the minimization of model complexity. We found a relevant improvement of the 21 

overall model performances when also SO
14

C data were introduced but only until an optimal 22 

weight, while beyond that weight model performances decreased substantially. It is difficult 23 

to generalize our optimum as a general recommendation since it also depends on the density 24 

of the two data streams, but our results suggest that the relative weight of the two 25 

measurements is an additional parameter that must be considered and optimized whenever the 26 

SO
14

C data are used for model constraining. 27 

A generalizable and detailed mechanistic understanding of SOC stabilization is not yet 28 

available, and SOC models are still facing a deep parametrical and structural uncertainty. 29 

According to some authors (e.g. Beven, 2002) such uncertainty is inherent to the nature of 30 

ecosystem modelling, and needs to be accepted and considered in developing new 31 
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methodologies. In this perspective we adopted a pragmatic approach to determine the optimal 1 

weighting factor, which turned out to be a crucial step with large impact on modelling results. 2 

 3 

4.2 SOC dynamics in the ZOFE experiment as estimated by different model 4 

structures 5 

All the model structures indicated a rapid decrease in the young pool following the conversion 6 

from grassland to cropland. This means that the annual inputs under the new management 7 

were too small to replenish the C in the former young pool while most of the material is either 8 

decomposed or humified in the old pool. This is not unlikely since also by-products, like 9 

straw, are removed, and the inputs from the cropland management are greatly reduced 10 

compared to a low-intensity grassland (Rumpel et al., 2015), where a lot of the net primary 11 

productivity is either retained or returned in form of excrements. Furthermore, the disruption 12 

of the soil structure that formed under permanent grassland caused by the conversion may 13 

have released and subsequently mineralized largely undecomposed organic matter, such as 14 

particle or light fractions previously protected inside aggregates (Six and Paustian, 2014). 15 

After this re-equilibration of the young pool, the slower but constant decrease in the total SOC 16 

was explained by all the models with a slow but constant decrease in the old pool, missing the 17 

inputs previously received from a bigger young pool. All our model structures indicated that 18 

the considered treatments in the ZOFE experiment are all still far from a new SOC 19 

equilibrium. 20 

The error in the simulated SO
14

C might be due to an overestimation of the speed of the C 21 

cycle. Nevertheless the fact that more complex model structures (IV, V and III) did not 22 

present any advantage over simpler (I and II) structures makes it difficult to judge the weight 23 

of the two represented processes (stabilization of SOC, represented by an additional “inert” 24 

pool, or substrate feedbacks. The same discrepancy in predictions might also be caused by a 25 

systematic underestimation of the inputs. Except for the highest input treatment (FYM), the 26 

posterior probability distribution for the assumed input error term (S4) was always skewed 27 

toward the upper limit. This suggests some kind of systematic error concentrated in the lower 28 

end of the input range. Hence, the application of linear allometric functions to estimate carbon 29 

inputs from yields, as adopted here, must be treated with caution. The relatively symmetric 30 

distribution (and in general lower value) of the input error term for the FYM treatment in 31 
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structures I, II and III points out that model structures not considering substrate interactions 1 

might be more robust in cases of input uncertainty. 2 

Another possible reason for the error in model predictions might be the nature of the error in 3 

the SO
14

C series. This has been estimated by Leifeld and Mayer (2015) from the last time 4 

point and subsequently extrapolated to the whole time series, assuming therefore normality 5 

and homoscedasticity over time. These assumptions might not always hold in soil systems, 6 

and this would be particularly crucial in the case of the 1973 point in the control treatment. 7 

Further investigation, focused in particular to the belowground production in the ZOFE 8 

experiment, is needed for determining the reasons for such error. 9 

 10 

4.3 Initial SOC distribution and MRT of SOC pools in the ZOFE experiment as 11 

estimated by different model structures 12 

Our results for the kinetic parameters are in general in the same order of magnitude than what 13 

was reported in the literature (Andrén and Kätterer, 1997), although the introduction of the 14 

SO
14

C forced a deceleration of the C cycle.  15 

The estimation of MRT strongly depends on all the assumptions in the model structure, and 16 

the high uncertainty around what might be the "best" structure is pointed out by the 17 

disagreement of the different criteria used for selection, which highlights the fact that there is 18 

no true model (or that “all models are wrong”, Box, 1976). The combination of several 19 

structures, although difficult to perform in practice (Refsgaard et al., 2006), might therefore 20 

represent a reasonable option and deserves further attention. 21 

The MRT estimates (Fig. 8) depend on the introduction of a substrate control term in the 22 

model structure, but once this was accounted for it seemed quite robust. We must consider 23 

here that the introduction of a substrate control term as described by Eq. (8) modifies the 24 

definition of the decomposition constants, and therefore the MRT calculated accordingly. 25 

When introducing also the term   in the calculation of MRT this ranged between 2.78 and 26 

3.13 and 46.00 and 54.47 years for young and old pool respectively, so not far from what 27 

indicated by the other structures. A detailed discussion about the MRT definition is outside 28 

the scope of this study, but here we want to make clear that a direct comparison of the MRT 29 

between these two groups of structures according to a common definition would not be 30 

meaningful and the differences in the model structure must be accounted for. 31 
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Model initialization seemed quite robust, with values substantially not differing between 1 

models with the same number of pools. 2 

 3 

4.4 Balancing the bias/variance dilemma in SOC modelling 4 

As suggested by the multiple structures evaluated in this study, the conceptual nature of SOC 5 

pools makes their definition volatile. Each pool is a theoretical construction defined 6 

specifically by assumptions at the level of model structure as well as model calibration. 7 

Some attempts have been made to reconcile a definition of C pools with real measurements. 8 

For example the well-established forest model Yasso (Liski et al., 2005) bases its calibration 9 

on data from chemical litter fractionation, which gives the initialization values for the 10 

different C pools. But the fractionation behind Yasso might seem questionable in agricultural 11 

soils where inputs are often homogenized with the mineral fraction and less, if at all, 12 

identifiable. In more homogenized mineral topsoils the main obstacle to this approach is that 13 

available fractionation methods do not reflect precise stabilization processes (von Lützow et 14 

al., 2007). One of the most promising recent attempts to develop a non-theoretical 15 

quantification of SOC pools in agricultural/mineral soils is the one by Zimmermann et al. 16 

(2007), which tried to develop a measurement standard for RothC (Coleman et al., 1997) 17 

pools. All these methods share in common the risk that correlations between the 18 

measurements and the theoretical pools might be strongly localized (or difficult to reproduce, 19 

Poeplau et al., 2013). This is not surprising given the complexity of SOC stabilization 20 

mechanisms (Kleber et al., 2011). Indications are that stability should be considered as an 21 

intrinsic property of the soil ecosystem (Schmidt et al., 2011) and thus local. It is therefore 22 

problematic to generalize a fractionation methodology that reflects in detail SOC stabilization 23 

processes, which would in turn define SOC pools. 24 

Hence, we still need to aggregate the available information in a theory of SOC decomposition 25 

that is simple enough to be generalizable. This way the model structure represents the SOC 26 

decomposition processes in an aggregated (and simplified) way that is compatible with the 27 

amount of knowledge at disposal. The challenge of conciliating predictive power, and 28 

therefore practical value of our models, with accuracy is the formulation of the bias/variance 29 

trade-off as found in modern soil science. 30 
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As suggested from our dataset, which although not perfect is already relatively rich in 1 

information and not far from the best possible conditions available for soil carbon modelling, 2 

the information available for inverse modelling discrimination still seems insufficient to 3 

validate models that are too mechanistic.  4 

 5 

5 Conclusions 6 

The SOC in the ZOFE experiment underwent a profound decrease after the initial land use 7 

change from grass- to cropland. This decrease was described in the first years by all our 8 

model structures as a fast re-equilibration of the young pool, which decreased rapidly after a 9 

reduction of the inputs and/or an increased mineralization and caused in consequence a slower 10 

but constant decrease in the older pools. In the long term, treatments not receiving organic 11 

fertilization were still losing C even more than 60 years after land use change. The estimates 12 

of the MRT in the ZOFE experiment were robust once accounted for differences inherent to 13 

the model structures. Comparable model structures (in particular I, II and II) were relatively in 14 

agreement, and the influence of the number of pools on MRT was instead quite limited. 15 

The introduction of SO
14

C data during calibration improved performances of all model 16 

structures and reduced the uncertainty of the parametrization. It also made clear the existence 17 

of a trade-off between representing the information from SO
14

C and SOC when utilizing a 18 

multi-pool SOC model structure. None of our five structures seemed able to reconcile 19 

consistently the two data streams. This suggests the presence of processes that were implicit 20 

in the SO
14

C data stream but not well described in our model structures, which caused the 21 

information from the SO
14

C to have a strong impact on the results. We therefore suggest the 22 

explicit consideration of a weight associated with each data stream as a routine procedure 23 

whenever SO
14

C data are considered as an additional model constrain. 24 

In our data set, the best model performances were achieved by the two simpler models, 25 

pointing out that the data available do not allow for a more detailed mechanistic SOC 26 

modelling. Although processes based on interactions of part of the substrate with the 27 

decomposition kinetics might explain the observations, recalcitrance inherent to the substrate 28 

(corresponding to the adoption of a slower additional decomposing C pool) remains a valid 29 

alternative in explaining the data. 30 

 31 
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6 Data availability 1 

All the data on which this study is based are published in previous studies and the sources are 2 

cited in the text. 3 

 4 
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Table 1: The treatments considered in this study. 
†
= kg ha

-1
 y

-1
, 

††
= Mg ha

-1
 y

-1
, 

♣
=from 1 

organic amendment. 
a
=1949-1980, 

b
=since 1981, 

c
=1949-1990, 

d
=since 1991 *=average. 2 

Treatment  Annual input 
 Initial 

SOC
††

  

 Final 

SOC
††

 

   N
†
  P

†
  K

†
  Mg

†
 

Fertilizer 

C
†
 

Estimated  

total C
†
 

   

Control  0 0 0 0 0 580 38.75 24.28 

N2P2K2Mg  108
a
/139

b
 61

c
/38

d
 318

c
/167

d
 12

a
/56

b
 0 1350 38.75 27.05 

Farmyard 

Manure  
91

♣
 24

♣
 65

♣
 31 2500 3621 38.75 31.70 

 3 

Table 2: Summary of the model structures tested in this study (considered here in their basic 4 

forms for total C only and for the two isotopes together. 5 

  Struct. I Struct. II  Struct. III  Struct. IV  Struct. V 

Description  
Two 

pools 

Two pools 

+ Inert 

Three 

pools 

Two pools + 

substrate 

control 

Two pools 

+ substrate 

control + 

Inert 

Parameters  

(SOC) 
4 5 7 5 6 

Parameters  

(SOC+SO
14

C) 
4+1 5+2 7+3 5+1 6+2 

 6 

7 
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 1 

 2 

 3 

Figure 1: Average of the AIC among all the three treatments for the five model structures with the variation of 4 

the relative weight of SO
14

C over total C. In this scale 1 means only total C, 0 means only SO
14

C. 5 

6 
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 1 

 2 

 3 

Figure 2: Average of the RMSE among all the three treatments for the five model structures with the variation of 4 

the relative weight of SO
14

C over total C. In this scale 1 means only total C, 0 means only SO
14

C . 5 

6 
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 1 

Figure 3: Effect of the SO
14

C stream over the main SOC parameters in structures I and IV. In this scale 1 means 2 

only total C, 0 means only SO
14

C. The shaded areas represent the error of the calibrated parameter (calculated as 3 

standard deviation of the whole Markov chain). 4 

5 
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 1 

 Figure 4: Effect of the 2 

SO
14

C data over the main SOC parameters in structure II and V. In this scale 1 means only total C, 0 means only 3 

SO
14

C. The shaded areas represent the error of the calibrated parameter (calculated as standard deviation of the 4 

whole Markov chain). 5 

6 
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 1 

Figure 5: Effect of the SO
14

C data over the main SOC parameters in structure III. In this scale 1 means only total 2 

C, 0 means only SO
14

C. The shaded areas represent the error of the calibrated parameter (calculated as standard 3 

deviation of the whole Markov chain). 4 

5 
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 1 

Figure 6: Simulation of SOC pools in the ZOFE trial as described by model structure I, with weighting factor = 2 

0.35. Error bars represent the measured (black) and estimated (dark grey) standard error of the measurements. 3 

SOC (A,C,E) is in Mg ha
-1

, while SO
14

C (B, D, F) is in pMC. 4 

5 
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 1 

Figure 7: Simulation of SOC pools in the ZOFE trial as described by model structure II, with weighting factor = 2 

0.35. Error bars represent the measured (black) and estimated (dark grey) standard error of the measurements. 3 

SOC (A,C,E) is in Mg ha
-1

, while SO
14

C (B, D, F) is in pMC. 4 

5 
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 1 

Figure 8: MRT of the young pool (A) and old pool (B) of SOC in the ZOFE trial as indicated by the model 2 

structures examined, with weighting factor = 0.35 (solid colored area) and weighting factor = 0.65 (shaded area). 3 

The solid lighter colored area denotes the MRT calculated (for structures IV and V) according to 
k

1
, while 4 

the darker colored area according to 
k

1
, Error bars, reported only for weighting factor = 0.35 for readability 5 

reasons, denote the error of the estimate calculated as standard deviation of the whole Markov chain and depends 6 

on the model structure, model assumptions and priors. 7 

 8 
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 1 

Figure 9: Probability distribution of the initial size of the C pools (Y=Young, O=Old, R=Recalcitrant) in 2 

structure I (A), IV (B), II (C) and V (D), with weighting factor = 0.35. On the vertical axis is depicted the 3 

probability density of the parameter (dimensionless) and on the horizontal axis the value of the parameter (in Mg 4 

ha
-1

). Vertical lines are representing the mean value (thick lines) and the Venter estimated mode (thin lines) of 5 

the Markov chains.  6 

 7 

 8 
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